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The study of the behavior of thin-walled constructions and their elements (shells, rods, 
etc.) under the action of impulsive loads is relevant to a number of rapidly developing branches 
of the mechanics of deformable bodies. One of these areas of study is related to the instab- 
ility of shells. A qualitative picture of the phenomenon comes down to the following. During 
the loading of an ideal shell by a uniformly distributed exterior impulsive load, all of its 
elements have the same initial radial velocity, directed toward the axis. If the stresses 
that arise reach the value of the dynamic yield point of the shell material, then the mate- 
rial begins to flow, and continues to do so until the initial kinetic energy of the shell is 
expended in the work of plastic deformation. A shell of smaller radius and greater thickness 
results. However, the presence of imperfections in the shell and nonuniformities in the load 
can lead to some dispersion in the values of the velocity and the finite displacements along 
the surface of the shell, i.e., to small perturbations in the radial compression of the mate- 
rial. Any deviation of the shell from a round form is increased under the action of compres- 
sive circumferential stresses. The motion which arises in this case can be accompanied, under 
certain conditions, by a loss of stability. If the elastic limit of the material is exceeded, 
a shell which loses its stability keeps its bulged form. 

It is of interest to uncover the basic factors which control such motion (initial geo- 
metry and velocity of the shell, and the physicomechanical properties of the material). 

i. The phenomenon of dynamic elastic instability and dynamic loss of stability beyond 
the limits of material elasticity for cylindrical shells under the action of exterior impul- 
sive loading has been studied in a number of works [i-7]. Thus in [2, 3], it was established 
that for relatively low loading amplitudes (when the shell material is elastic: W0/c < Es), 
the perturbed form of the shell, defined as the number of waves (creases) in the circumferen- 
tial direction, is given by n ! = (2R0/a)(W0/c) z/2 Here W0, c are the initial shell velocity 
and the sound speed, e s the material strain at the plastic yield point, and R 0 and a are the 
initial mean radius and the thickness of the shell. 

According to [i], for relatively high load levels when the shell material is in the 
plastic state (W0/c ! Es), the perturbed form of a shell made of viscoplastic material is 

n 2 = (~E0/a)(oT/Eh) z/2 (o T is the stress in the o-s diagram for ~ = 0.2%, E h is the modulus 
of strain hardening). 

In [4] those circumstances were considered in which the formation of waves in the 
circumferential direction of the shell takes place as a result of the interaction between 
the membrane and bending modes of deformation, which are the components of the shell's 
reaction to impulsive loading. For this case, [4] develops a unified approach for deter- 
mining the predominant modes/form in the elastic and plastic stages of shell reaction, 
leading to the relation 

(E is Young's modulus). 

In [7], the motion of the boundaries of a plane viscoplastic ring was studied, in terms 
of the inertia towards its center, for stability of the vector velocity and the stress tensor 
with respect to small harmonic perturbations of the boundary. From an analysis of the asymp- 
totes to the solution of this problem, it transpires that small perturbations on the outer 
boundary of the shell grow without bound during compression toward the center, while perturba- 
tions at the inner boundary have a wave-like character with limited amplitude. A relation 
determining the number of waves for which instability of the form is observed is written in 
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the form n 4 = (4~/R1)(2/OOs)I/2 (~ is the viscosity of the shell material; R I the internal 
stopping radius of the ring; a s the dynamic plastic yield point). 

2. In this paper, we present new experimental data on the instability of the compression 
of shells made of standard grade steel St3 and lead LI. In the experiments, we used cylin- 
drical she&Is with a length-to-diameter ratio of -5. The surface finish of the machined 
shells corresponded to class six. A layer h of plastic high explosive (HE) was loaded against 
the end surface of the steel shell. This high explosive had a density of 1.51 g/cm a and a 
detonation velocity of 7.8 km/sec. The shell with its HE load was enclosed in a metal shield 
(a shell of thickness H [8]); in a number of cases, the shield was not used, as in [i, 9]. In 
the experiments with lead shells, there was a uniform air gap of 2.8 mm between the loaded 
surface of the shell and the HE layer. In this case, the HE layer was placed on the inner 
surface of the shield. One of the ends of such shells was covered by a solid disk with a 
layer of HE applied to its surface. Detonation was initiated at the disk center (on the shell 
axis) and propagated out radially to the HE layer located on the side walls of the shell (or 
on the screen), so that loading took place under conditions of running detonation. 

We established that for cylindrical shells, there is a critical value of the relative 
thickness (6, = a/R20; R20 is the outer radius of the shell), below which the shell converges 
unstably. Thus for the shells studied of steel and lead, the value of 6, was -i0 and 30%, 
respectively. 

In experiments using shells with 6 < 6,, for which inertial axisymmetric compression was 
realized when the initial kinetic energyof the shell is completely transformed during com- 
pression to the work of plastic deformation and the shell is stopped at some definite radius. 
This makes it possible to monitor the transverse section of the deformed shell after the 
experiment, and to visually observe the number of waves (creases) N in the circumferential 
direction. In some experiments with steel shells whose thickness was greater than the criti- 
cal value, spallation of a layer of thickness 6 < 6, took place [9]. In this case the main 
mass of the shell of thickness 6+ > 6, is insignificantly displaced, with loss of stability 
of form, and the instability of the compression of the spalled layer was studied. In experi- 
ments with steel shells, the initial relative thickness and velocity of the shells was varied, 
while in experiments with lead shells, the initial velocity of the shell varied. 

The conditions and results for all experiments are given in Table i, where s2, = R20 - 
R2,/R20 is the mean relative deformation of the shell after deformation, and ~ = W0/R20 is 

the initial strain rate of the shell. For the initial shell velocity W0, we apply its value 
as determined in series I from the conservation laws [I0], in series II as a result of numeri- 
cal computation [9], and in series III as a result of measuring the velocity of lead plates 
in a plane system with gaps. Here the values nl, ..., n 4 are also introduced. In computing 
them, we used material properties, taking into account the dependence of these properties on 
strain rate [11, 12]. For steel, these are ~ = 4.7"104 kg/(m'sec), OT/E h = 0.i0, E/E h = 82, 
o s = i GPa, and for lead they are ~ = 3.7"103 kg/(m.sec), OT/E h = 0.15, E/E h = I00, o s = 30 
MPa. 
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Fig. i 

Figure 1 shows a photograph of the cross sections of some shells after loading: a solid 
steel shell, a steel shell that has spalled, and a solid lead shell (corresponding to experi- 
ments I, 7, and i0). Analysis of these cross sections indicates that both for solid steel 
shells (a) and for layers that have been spalled from solid steel shells (b), the perturbed 
inner and outer boundaries move in concert regardless of the initial velocity of the shell. 
Such behavior is not a property of the lead shells (c), which are characterized by the pre- 
sence of fundamental perturbed modes/forms (N O = 5-6), on which additional perturbations are 
applied with approximately double frequency (NP = 12-15). This is particularly clearly demon- 
strated for the inner shell boundary. Similar behavior was observed in experiments on axisym- 
metric compression of shells made of Duralumin D-16, which are compressed by high explosive 
products [7]. Note that the amplitudes of the perturbation both for the outer and the inner 
boundaries of the shells studied in [7], and the spalled layers decreases with decreasing 
stopping radius (or increasing loading), which is not in agreement with the asymptotic be- 
havior in [7]. 

Analysis of the experimental data given in Table 1 shows that the bending deformation 
mode for steel shells in the plastic stage is controlled both by the magnitude of the loading 
(experiments I-4) and their initial geometry (experiments 6-8). It is clear that satisfac- 
tory agreement between experimental values of the form number N with computed nl, n2, n3, n 4 
is on the whole not observed. For sheels being impulsively loaded by loads of various mag- 
nitudes and placed in direct contact with explosive products (experiments 1-5), the experi- 
mental values of N are confined to the range n 2 < N < n3, which does not contradict the con- 
clusions of [4]. For shells of different initial thickness (experiments 6-8), which manifest 
spalled layers that are not in contact with explosive products, the observed form numbers lie 
within other limits (n I i N < n2). The results of experiment 8 (N = nl, N < n2, n3) can 
evidently be explained by the fact that the deformation of the shell is modest (s2, = 3.4%) 
and the elastic reaction which takes place before and after the plastic stage has a noticeable 
influence on the shell's behavior [4]. The observed form numbers for the lead shells do not 
agree with any of the computed values (N > n I ..... n4). In addition, as noted above, a more 
complex perturbed form of the shell boundary occurs, which does not lie even qualitatively 
within the limits of the known asymptotes (for example, [7]). 

Thus we have confirmed that with decreasing relative thickness or with growth in the 
initial velocity, the number of perturbations on the shell in the circumferential direction 
increases. The issue of how the material parameters of the shell (P0, ~ ~) control the 
form of the unstable motion requires a more detailed study, especially in the area of theory. 
On the whole, we must recognize the validity of the assertion in [13], that at present there 
are no generally applicable criteria for the types of shell motion instability studied here. 
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NUMERICAL ANALYSIS OF CRACK DEVELOPMENT IN STRUCTURALLY 

NONUNIFORM COMPOSITES 

E. A. Lankina UDC 5 3 9 . 2  

The plane problem of an elastic unidirectional composite with a crack which grows from 
infinity at constant stress o is considered here. The y axis coincides with the direction of 
reinforcement. If the dimensions of the binder H and the fiber h are small compared with 
the length of the crack, the macroscopic field far from the crack can be determined by the 
methods of continuum mechanics on the basis of integral equations from potential theory. 
Solution of the macroscopic problem in this formulation gives infinite growth of the stress 
upon approach to the crack margins. In the neighborhood of the crack margin, a formulation 
that takes into account the characteristic dimension of the real structure of the materials is 
necessary. Therefore, it is useful to break the problem down into two stages. In the first, 
the stress in a structureless composite is determined, i.e., the limiting case of a "smeared" 
structure is studied, when h, H ~ 0, h/H = const. Then a region around the crack margins in 
selected, and the stress determined for the smeared composite is used as a boundary condi- 
tion on the boundary of this region. In the second stage, the interior of this region is 
described by equations that take into account the discrete structure of the composite, result- 
ing in finite stresses. In this case the crack and the boundary of the selected region are 
considered to be an aggregate of fiber fractures and delaminations of binder. By using the 
strength conditions for fracture or delamination, the development of a crack is calculated, 
and parameter values are found at which cracks grow by fracture of the fibers or by delamina- 
tion of the binder. 

i. We denote displacement of the i-th fiber along the direction of reinforcement y by 
ui(Y). Then the equation of equilibrium for the i-th fiber inside the composite is written 
as [17]. 

hH e2 u~ ~2 ( i .  i ) dg ~ + ( u i + ~ - - 2 u i + , ~ _ , )  = O. ~ = ~/E 

(~, E are the moduli of elasticity for the binder and the fiber). The normal stress in the 
fiber and that tangential to the binder are computed from 

a=~ 'q+1 - ,q ( 1 . 2 )  
ai = E"aT,, Ti = ~t H 
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